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Abstract
We describe a mixing-length extension of the lattice Boltzmann approach to
the simulation of an incompressible liquid in turbulent flow. The method uses
a simple, adaptable, closure algorithm to bound the lattice Boltzmann fluid
incorporating a law-of-the-wall. The test application, of an internal, pressure-
driven and smooth duct flow, recovers correct velocity profiles for Reynolds
number to 1.25 × 105. In addition, the Reynolds number dependence of
the friction factor in the smooth-wall branch of the Moody chart is correctly
recovered. The method promises a straightforward extension to other curves
of the Moody chart and to cylindrical pipe flow.

PACS numbers: 05.50.+q, 15.70.−a, 47.27.−i

1. Introduction

Over the past decade, a range of lattice Boltzmann (LB) methods have been developed as
mesoscopic models of isotropic [12] and (very recently) anisotropic [1] fluids. In fact, the
LB method shows particular promise when applied to complex situations at low Reynolds
number: typically multi-component systems [13, 15] and flows in complex geometry [8].
However, the LB method is not confined to these applications and the past few years have seen
a growing level of interest in applying LB in areas where more conventional computational
fluid dynamics (CFD) is well established. One such area is that of incompressible, internal
turbulent flow.

Turbulent flow has been addressed with LB most thoroughly in the context of external
flows. Here, it might be argued that the leading edge of the technology lies outside academia
and with companies such as the Exa Corporation [2]; as a consequence, LB should certainly not
be viewed as an immature technology. Recent papers in this area treat demanding problems
(e.g., an axial compressor cascade [3]) with considerable sophistication. Multi-scale LB
schemes and a k–ε turbulence model [3] have also been developed. See also the references
cited in chapter 9 of [12]. In the present paper we consider internal flow.
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In applications, turbulent pipe flow is more important than duct flow, but more difficult
to implement. However, for the purposes of turbulence modelling, the two cases possess
many common features [16], making the latter an appropriate and accessible test-bench.
Accordingly, in this paper, we propose and validate a turbulent LB scheme for an infinite
aspect ratio duct. The method may be subsequently extended to the simulation of cylindrical
pipe flow.

Setting aside as impractical, the direct simulation of turbulent length scales, one has a
wide choice of strategies from which to choose. The k–ε and the Prandtl mixing-length models
are but two, albeit popular, approaches [16]. Both recover, from the solution of appropriately
modified (Reynolds-averaged) Navier–Stokes equations, what are essentially time-averaged
velocity fields, in which the sub-grid scale turbulence has been averaged [16]. In both cases,
the accepted device of a turbulent contribution to the molecular viscosity is central.

The dynamics of an LB fluid is expressed through the form of the continuity and
momentum (Navier–Stokes) equations, recovered from its particular microscopic evolution
algorithm. Here, when discussing our approach in section 2, we attempt carefully to highlight
how the ‘mixing-length’ modification, to the basic LB algorithm of Teixeira [14], actually
modifies the lattice fluid. The changes are measured by the precise form of its Navier–Stokes
and continuity equations and as such are exactly to account for the (time-averaged) influence
of turbulence through additional modelled stresses. This precisely follows the traditional
method of Reynolds-averaged stresses, a point to which we shall return.

Accurate representation of a boundary is as central in LB as in any other branch of CFD
and this is especially true for turbulent flows. Our chosen closure strategy [5], applied in
section 3 is demonstrably second-order accurate. We adapt the method to represent the slip
velocity at the outer (wet) side of the viscous sub-layer, which occurs close to the wall in
turbulent duct flow. Accordingly, in the discussions of section 3, lattice boundary nodes lie
within the lattice fluid at the appropriate distance.

In section 4, we present results of turbulent, smooth-duct flow and consider the form of the
velocity profile that results when turbulent flow is forced by a uniform pressure gradient, as is
implemented through a uniformly impressed body force. More importantly, we also consider
the variation of the Darcy–Weisbach friction factor over a large range of Reynolds number, to
recover excellent agreement with experiment. In section 5, we present our conclusions and
proposals for future work.

2. Preliminary analysis

To describe the flow of an incompressible, turbulent fluid, workers most often calculate a
velocity field which has been averaged over a time scale long relative to the turbulence. It
can be shown that this velocity field, conventionally denoted by Uα, is governed by the usual
continuity equation, together with momentum (Navier–Stokes) equations modified to include
the influence of the turbulence through the Reynolds stresses, ταβ [16]

∂tρUα + Uβ∂βρUα = −∂αP + ∂β(ν0ρSαβ) + ∂βταβ (1)

where Sαβ is the strain rate tensor based on U. The Prandtl mixing-length approach to modelling
turbulence entails the physical assumption:

ταβ = νtρSαβ (2)

which, when substituted into equation (1), generates an additive ‘correction’ to the
usual molecular kinematic viscosity ν0 in the turbulent fluid’s effective stress tensor [16]
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(see below). The turbulent viscosity νt appearing in equation (2) is position dependent and is
given, after Prandtl, by

νt = l2
mix|Sαβ | (3)

where all symbols have their usual meaning; |Sαβ | = (SαβSαβ)1/2 and lmix is the mixing length,
an empirical parameter which generally varies with position in the flow domain. In fact, the
mixing length is intended to register the scale of turbulent eddies from physical considerations,
usually the placement of solid boundaries. Accordingly, a mixing-length field is generally
input into particular flow calculations, often from practical experience and physical intuition.
In the particular case of uniform duct flow, with infinite aspect ratio and translational invariance
in the x-direction, it is common in traditional CFD to assume a fourth-power model across the
y-direction [16]:

lmix = W

2

[
0.14 − 0.08

(
1 − y

W/2

)2

− 0.06

(
1 − y

W/2

)4
]

(4)

in which the parameter W is the width of the duct and a value of 0.41 for the von Kármán
constant is implicit. Thus, a modified effective viscosity

ν = ν0 + νt (5)

replaces the molecular viscosity in the viscous stress term of the Navier–Stokes equations
describing the fluid, giving

∂tρUα + Uβ∂βρUα = −∂αP + ∂β((ν0 + νt )ρSαβ). (6)

Equation (6) is solved for time-averaged velocity and pressure fields after imposing appropriate
velocity boundary conditions and combining with the continuity equation. Again, we
emphasize that the governing equations now yield quantities time-averaged relative to sub-grid
turbulent fluctuations. They assume a more complicated character, as the viscosity acquires a
spatial dependence through Sαβ , which appears in νt . Moreover, with the effective viscosity
now a combination of molecular and turbulent components, it ceases to characterize the fluid
alone and must be regarded as characteristic of the overall problem: geometry, fluid and
Reynolds number.

In LB hydrodynamics, the simulated fluid’s viscosity ν is determined by the algorithm’s
collision parameter τ , the notation for which should cause no confusion with the Reynolds
stress tensor ταβ . Thus, to embed the mixing-length model into an LB scheme, one might use
the device of inserting the target spatial dependence directly into the collision parameter, τ , in
such a way as to recover the form for the viscosity given by equation (5). We now consider
the consequences of spatial dependence in τ , by following the analysis carefully through to
the lattice fluid’s macroscopic equations, in order to vindicate the approach.

For definiteness we consider the two-dimensional, 9-velocity (D2Q9) LBGK model
(figure 1(A)) pioneered by Qian et al [10] and analysed in detail by Hou et al [7]. Denoting
vectors of the lattice basis by ci (indexing as in figure 1(A)), we write collision and subsequent
propagation of a generalized D2Q9 LBGK model with a position-dependent scalar collision
parameter in the form

fi(r + ci δt , t + δt ) = fi(r, t) +
1

τ (r)

(
f

(0)

i − fi

)
+ Fi. (7)

Here the parameter δt represents the time step; in the case of constant collision scalar, τ (r) = τ0

determines a molecular viscosity

ν0 = 2τ0 − 1

6
δt (8)
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Figure 1. (A) Schematic of a bulk node for the D2Q9 lattice. Links are numbered as referred to
in the text; link velocity vectors are numbered accordingly. (B) Schematic of LB boundary node
(top ‘wall’), immediately prior to the collision step—propagated data are denoted by arrowheads,
unknown link information is denoted by the open circles on links. Here, the (slip) wall location is
indicated by the dashed line.

and the additive constant, Fi , represents a uniform body force G impressed throughout the
lattice fluid [4] according to

Fi = 3Gtpρcix (9)

with the constants tp defined below.
For our model, τ (r) has spatial dependence which is manipulated to yield an appropriately

modified macrodynamic; in particular the usual continuity equation and the turbulent
Navier–Stokes equations (6) with the coefficient of the dissipative terms modified after
equations (3) and (5). In order to maintain the stability of the model, it is further assumed that
0 < 1/τ(r) < 2. As usual, the macroscopic moments for lattice fluid density and momentum
are

ρ =
∑

i

fi

ρv =
∑

i

fici

(10)

and the equilibrium distribution function, f (0)
i , is

f
(0)
i (ρ, v) = tpρ

[
1 + 3

v · ci

c2
s

− 3|v|2
2c2

s

+
9(v · ci)

2

2c4
s

]
(11)

where the weights tp = 4/9, 1/9, 1/36 for i = 0, i even, i odd, respectively (figure 1(A))
and cs = 1/

√
3 is the velocity of sound, for the D2Q9 lattice. The form of the equilibrium

distribution function, (11), ensures that

ρ =
∑

i

f
(0)

i

ρv =
∑

i

f
(0)

i ci

(12)

and also recovers the non-viscous momentum-flux tensor

	
(0)
αβ =

∑
i

f
(0)
i ciαciβ = 1

3
ρδαβ + ρvαvβ . (13)
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Higher-order contributions to the distribution function, f
(n)
i , introduced through the

Chapman–Enskog expansion (e.g., [7])

fi = f
(0)
i + δtf

(1)
i + δ2

t f
(2)
i + δ3

t f
(3)
i + · · · (14)

have vanishing first and second moments:∑
i

f
(n)
i 
i = 0 n > 0 (15)

where 
i = 1, cix, ciy as a direct consequence of equations (12). However, the second
moments of f

(n)
i with respect to the lattice basis vectors are not zero.

Travelling the usual road to macrodynamics now: a Taylor expansion of the left-hand side
of equation (7); substitution of (14) and of a similarly parametrized time derivative

∂t = ∂t0 + δt ∂t1 + δ2
t ∂t2 + δ3

t ∂t3 + · · · (16)

is followed by a process of collecting terms in powers of the parameter δt . We can, thus, write
down equations which describe our turbulent LBGK algorithm at order δt :

(∂t0 + ciα∂α)f
(0)
i = − 1

τ (r)
f

(1)
i (17)

and at order δ2
t :

∂t1f
(0)
i + (∂t0 + ciα∂α)

(
1 − 1

2τ (r)

)
f

(1)
i = − 1

τ (r)
f

(2)
i (18)

where the collision parameter, τ , now depends upon the position, r, which is treated as a
continuous variable. We do not examine the consequences of expanding τ in powers of the
parameter δt . By making use of the form of the equilibrium distribution function (11), the
result (17) can be used to show to order u that∑

i

f
(1)
i ciαciβ = −2c2

s ρτ (r)Sαβ (19)

where Sαβ is the lattice fluid’s rate of strain tensor.
Given the properties of the equilibrium distribution, the modified evolution equation (7)

clearly conserves momentum density on the shortest, and hence all, time scales whatever the
spatial dependence of τ (r). One therefore expects to recover an unaltered continuity equation.
A detailed analysis of the lattice fluid’s continuity equations confirms this; indeed, it is easy to
show that position dependence in the collision parameter does not affect either the continuity
or Euler equations of the lattice fluid [6] at order δt . Accordingly, we proceed directly to the
order δ2

t , Navier–Stokes equations, by making the usual recursive substitution of equation (17)
into equation (18):

∂t1f
(0)
i + (∂t0 + ciα∂α)

(
τ (r) − 1

2

)
(∂t0 + ciα∂α)f

(0)
i = − 1

τ (r)
f

(2)
i . (20)

Hence, with variable collision parameter τ (r) it is possible to obtain, from the first moment
of equation (20), a form for the Navier–Stokes equation of the lattice fluid [6]:

∂tρUα + Uβ∂βρUα = −∂αP + ∂β

(
1
6 (2τ (r) − 1)ρSαβ

)
(21)

which is precisely the required form of the turbulent viscosity model, equation (6). Note,
however, that the diffusive term of equation (21) contains the lattice fluid’s strain rate tensor
which can be recovered from equation (19). Note also that the presence of a variable collision
parameter in the LB algorithm (7) does not in any way affect the structure of the Navier–Stokes
equations when written in the form of equations (1) and (21).
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In order to follow Texeira [14], we switch to using ω(r) = 1/τ(r) for collision parameter,
with ω(r) partitioned according to

1

ω(r)
= 1

ω0
+

1

ωt(r)
(22)

(notation of [14]), in which all the spatial dependence is assumed to reside in the turbulent
contribution ωt(r). Clearly the form of (22) is adapted, on appeal to equations (5), (1) and
(21), to allow one to set the molecular viscosity of the lattice fluid independently [14],

ν0 = 1

6

(
2

ω0
− 1

)
(23)

and the turbulent viscosity of the lattice fluid:

νt (r) = 1

3ωt(r)
. (24)

In fact, the spatial dependence of the turbulent viscosity (and, thereby, that of the corresponding
turbulent contribution to the collision parameter) enters through the contraction SαβSαβ of
velocity gradients [16]. To obtain an appropriate form for this turbulent contribution, it is
natural to use equation (24) and definition (3). Hence, with the assistance of equation (19)
which gives a local identity for Sαβ , and from equations (24), (3) and (19) there results an
equation for ω(r) [14]:

1

3ωt(r)
= l2

mix
ω0ω(r)

3ρ(ω0 + ω(r))

∑
ij

(
fi − f

(0)
i

)(
fj − f

(0)
j

)
ciαciβcjαcjβ . (25)

This quadratic may be solved for its positive root:

ω(r) = 2ω0

1 +
√(

1 + 4Qω2
0

) (26)

with

Q = 9

2

l2
mix

ρ

∑
ij

(
fi − f

(0)

i

)(
fj − f

(0)

j

)
ciαciβcjαcjβ (27)

and where the value of the von Kármán constant K is subsumed in the definition of our choice
of lmix.

Here, then, we have an expression for the LBGK collision parameter, which modifies
the algorithm to simulate a turbulent fluid, as described by the continuity equation and the
mixing-length model of the Reynolds-averaged Navier–Stokes equation. Accordingly we
obtain moments of the distribution function which now represent time-averaged quantities.

In the next section, we shall discuss the application of this method to the simulation of
internal pressure-driven flow.

3. Turbulent duct flow

In this section, we discuss the application of the LB model described in the last section to
simulate internal, pressure-driven, flow in a uniform cross section, infinite aspect ratio duct
with smooth walls, over a range of turbulent Reynolds number, Re. In particular, we aim to
investigate the turbulent component of the collision parameter, ωt(r), the flow profiles and the
variation of the friction factor with Re (the Moody curves).

Incompressible, internal, turbulent flow in pipes and ducts is a complicated problem.
Different parts of the flow reside in different flow regimes: near the boundary (wall) there
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is a narrow but important viscous sub-layer in which the velocity varies rapidly, but flow is,
for smooth walls at least, laminar [11, 16]. At the centre of the duct, in the so-called core
flow, there is fully developed turbulence. Between these two regimes there are a number
of identifiable interstitials. Correct matching of the sub-layer and the outlying regions to a
common slip velocity us are essential; us is usually assumed to be governed by a law-of-
the-wall. It should be noted that the sub-layer is described by the standard Navier–Stokes
equations, and the outlying regions are governed by the Reynolds-averaged Navier–Stokes
equations.

The simulations described below take the explicitly modelled boundary to lie parallel with
the x-axis, and we impose periodic boundary conditions to form the y-axis boundaries of the
flow domain. Clearly the solution must be translationally invariant and, accordingly, flow can
be safely induced by a uniform body force [4]. Hence, an additive constant is introduced into
the evolution equation (7), since this is the exact equivalent of a uniform pressure gradient in
the chosen geometry.

Following traditional CFD [16], we do not attempt explicitly to resolve flow in the laminar
viscous sub-layer. Instead, we close the lattice fluid domain by specifying the behaviour of
the lattice fluid on the wet face of that sub-layer to be law-of-the-wall; i.e. we specify an
appropriate slip velocity, us , for the lattice boundary which also implies an axial rate of strain
Sxy . The purely axial time-averaged velocity must fall linearly to zero in a sub-lattice distance.
Thus, in a practical calculation of pipe flow, a slip velocity us is determined via a quantity
traditionally denoted by u∗ (sometimes called the stress velocity [16]), which in turn depends
upon the average shear stress on the wall, τwall [11]:

ρ(u∗)2 = τwall = (p1 − p2)A

Aw
. (28)

Here p1, p2 are the pressures at flow stations 1 and 2, assumed to lie a streamwise distance L
apart. Also, A = Wd is the cross-sectional area of the duct (W being the duct width and d its
(unspecified) depth) and Aw = 2Ld is the area of the wetted perimeter. Accordingly,

u∗ =
√

GW

2ρ
(29)

in which G is the pressure gradient. With a value of u∗ given by equation (29), we obtain a
slip velocity from the identity (see [16])

us = u∗
(

1

K
ln y+ + B

)
(30)

in which K = 0.41 is the von Kármán constant and B is a constant defined below. y+ = yu∗/ν0

is a dimensionless scaling of the distance y in the unmodelled viscous sub-layer. The sub-layer
ranges from y = 0, at the physical wall, to y = D (to be specified). It is important to note that
for the law-of-the-wall to be valid, 0 < y+(y = D) < 30. This is achieved by choosing our
lattice fluid’s molecular viscosity through (8), and its stress velocity by appropriate choice of
the pressure gradient and duct width in equation (29).

For our LB simulations, we choose D = 0.99 lattice units. The corresponding velocity
gradients at the unmodelled (off lattice) boundary now follow from the slip velocity (30) and
the assumed depth D of the viscous sub-layer:

Sxy = Syx = ±u∗

D
Sxx = Syy = 0. (31)

Thus, the lattice fluid’s domain is effectively bounded by a sub-lattice viscous sub-layer of
specified depth D, the inner edge of which moves with a slip velocity consistent with the
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law-of-the-wall, and which ensures the correct average shear stress at the unmodelled
(physical) wall.

In [5], we developed a method for closing an LB simulation lattice with verifiably correct
hydrodynamic behaviour, i.e. of setting densities, fi , on the undefined links with values
consistent with those populating bulk lattice node at the lattice edge. The particular lattice
basis considered there was D2Q9 and the Dirichlet boundaries were taken to be planar.
The explicitly modelled boundaries of our duct are themselves planar and so the closure
strategy developed in [5] may be used directly. Figure 1(B) depicts a ‘law-of-the-wall’ node,
terminating our D2Q9 lattice at the y = W − D modelled wall. The dotted line shows the
supposed location of the slip boundary. Clearly links i = 1, 2, 3 are ‘cut’, the remaining
links being taken to lie within the simulation domain, precisely at the edge of the viscous sub-
layer. Accordingly a post-propagation value of fi exists for all boundary nodes’ links except
those characterized by i = 5, 6, 7 (indicated by the use of circles as opposed to arrows in
figure 1(B)). Using the method of [5], we can construct second-order correct fi for these links,
chosen to recover the target slip velocity at the boundary and the corresponding stress. The
latter quantity is calculated directly from the region of the boundary, using finite differences.

4. Results: flow profiles and Moody curve

In this section we discuss results for turbulent duct flow. Throughout, v̄ denotes the cross-duct
average velocity, W the physical width of the duct and ν0 is the molecular viscosity of the
lattice fluid. The fluid is forced parallel to the x-direction by the application of a uniform
body force, Fi = 3Gtpρcix . The forcing must be small to maintain stability when the lattice
fluid has the small viscosity necessary to access the large Reynolds numbers which, in many
applications, characterize turbulent duct flow. Accordingly, for all the results presented here,
G = 1.5×10−5 was chosen alongside a lattice y-dimension of 60 lattice units. The simulations
correspond to constant spatial resolution. Also, the physical width of the simulated duct is
actually 60 + 2D, where D is the width of the sub-layer. The initial density of the lattice fluid
was chosen to be 1.8, the von Kármán constant was chosen to be K = 0.41 and the constant
B which appears in our form of the law-of-the-wall was chosen to be 5.0, a value consistent
with smooth walls [16].

In order to ensure sufficiently large Reynolds numbers

Re = 2Wv̄

ν0
(32)

consistent with turbulent duct flow, the molecular component of the collision parameter
was varied in a range 1.991 < ω0 < 1.999, close to its maximum value of 2 (where the
corresponding variation in the molecular viscosity is rapid). The resulting variation in the
measured Reynolds number was found to be 104 < Re < 105: well into the turbulent regime.
The convergence of the data was slow (several tens of thousands of time steps) on account of
the very small molecular viscosities in use. All the data presented derive from steady-state
velocity fields which have evolved for many thousands of time steps, without fluctuation.

Figure 2 shows the variation in the steady-state velocity profile with y distance across
the duct, measured after 7 × 105 time steps, for ω0 = 1.995, resulting in an average
velocity (calculated by use of the trapezium rule and corrected for the viscous sub-layer)
of v̄ = 0.069 722, yielding Re = 20 357. The velocity profile shown in figure 2 into which the
unmodelled sub-layer data have been inserted, clearly exhibits all the expected characteristics
of a turbulent profile [11, 16], across the whole width of the duct, without any spurious slip
velocities at the boundary, either at the wet boundary of the viscous sub-layer or at the wall.
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Figure 2. Steady-state velocity profile, measured after 7 × 105 time steps, for ω0 = 1.995,
resulting in an average velocity (calculated by use of the trapezium rule and corrected for the
viscous sub-layer) of v̄ = 0.069 722, yielding Re = 20 357.
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Figure 3. Moody curve from the simulation data: the (logarithmic) variation of measured Darcy–
Weisbach friction factor, f , for Reynolds number Re in the range 104 < Re < 105.

A much more stringent test of the model (core and boundary algorithm together) resides in
its ability to correctly recover stresses at the duct wall, which may be assessed by considering
the Darcy–Weisbach friction factor

f = GW
1
2ρv̄2

(33)

where G, the pressure gradient, was set as discussed above. The friction factor was measured
directly and figure 3 shows its (logarithmic) variation over the range of Reynolds number
specified above. This branch of the Moody curves of course corresponds to smooth duct walls
(reflected in our choice of B = 5.0 in equation (30)). However, wall roughness was also
successfully modelled in the traditional way, by changing the value of the constant B. The data
of figure 3 are in excellent agreement with the experimental data [9].

Figure 4 shows a typical variation with cross-duct distance y of the full and turbulent
component, ω and ωt , respectively, of the LB collision parameter. The variation in the
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Figure 4. Left axis (diamonds): a typical variation in the overall collision parameter ω with
cross-duct distance y. This variation is notably small, as one might expect considering that values
of ω close to 2.0 accommodate a large range of kinematic viscosities. Right axis (crosses):
corresponding variation in the turbulent component ωt of the LB collision parameter. Simulation
data correspond to that characterizing figure 2.

effective value of ω is notably small, as one might expect, considering that values of ω close
to 2.0 accommodate a large range of kinematic viscosities. The simulation data and Reynolds
number are as in figure 2.

5. Conclusions and future work

Possibly the most interesting theoretical point we would like to make,arises from the treatment,
in section 2, of Teixeira’s method [14] of ‘turbulent modification’ to the basic LB algorithm,
through what is essentially a shear-dependent relaxation parameter. This shows that the
Chapman–Enskog derivation of the macrodynamics of an LB model (the traditional way of
deriving the model’s dynamics) exactly yields the (time-averaged) influence of turbulence as
additional, modelled stresses. This precise correspondence, with a form of the Reynolds-
averaged Navier-Stokes equations, without additional error, is not necessarily accidental and
may be regarded as a consequence of the essential LB algorithm: the momentum densities
interact in this (and most other LB) schemes at a point, i.e. through a ‘zero-ranged’ potential.
Mathematically, the position of the viscosity terms on the right-hand side of the Navier–Stokes
equation (in the ‘right’ position, sandwiched between differential operators) arises out of the
structure of the Chapman–Enskog derivation of the dynamics, in which time scales associated
with particular processes are effectively separated, which may also be significant.

In practical terms, we have implemented a method, after Teixeira, for simulating turbulent
flow, using a lattice Boltzmann simulation adapted to the Prandtl mixing-length model of the
Reynolds-averaged Navier–Stokes equations. The method has been validated for internal,
incompressible flow in an infinite aspect ratio duct. The method relies upon the imposition of
a second-order accurate boundary strategy to enable law-of-the-wall closure of the simulation
lattice. The stringent test of Reynolds number variation of Darcy–Weisbach friction factor
(equation (33)), shown in figure 3, decisively supports the observation that our implementation
is capable of representing smooth-walled duct flow. Moreover, results for walls of variable
roughness can be recovered from our model straightforwardly, using the usual device of
varying the law-of-the-wall parameter B, equation (30).
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Of course, in applications, cylindrical pipe flow is far more common than duct flow. The
method presented here could be adapted, to the simulation of cylindrical pipe flow, using the
method [4] of expressing a lattice Boltzmann fluid flow problem with axial symmetry in a one
coordinate system. The encouraging nature of the results recovered from this rather simpler
problem certainly indicate that to do so would be a worthwhile undertaking, especially as there
is a larger body of data for this type of turbulent flow [17].
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